Technical Demonstration on Model Based Training, Detection and Pose Estimation of Texture-Less 3D Objects in Heavily Cluttered Scenes

نویسندگان

  • Stefan Hinterstoißer
  • Vincent Lepetit
  • Slobodan Ilic
  • Stefan Holzer
  • Kurt Konolige
  • Gary R. Bradski
  • Nassir Navab
چکیده

We propose a framework for automatic modeling, detection, and tracking of 3D objects with a Kinect. The detection part is mainly based on the recent template-based LINEMOD approach [1] for object detection. We show how to build the templates automatically from 3D models, and how to estimate the 6 degrees-of-freedom pose accurately and in real-time. The pose estimation and the color information allow us to check the detection hypotheses and improves the correct detection rate by 13% with respect to the original LINEMOD. These many improvements make our framework suitable for object manipulation in Robotics applications. Moreover we propose a new dataset made of 15 registered, 1100+ frame video sequences of 15 various objects for the evaluation of future competing methods. Fig. 1. 15 different texture-less 3D objects are simultaneously detected with our approach under different poses on heavy cluttered background with partial occlusion. Each detected object is augmented with its 3D model. We also show the corresponding coordinate systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Object Recognition and Full Pose Registration in Cluttered Environments

Robust perception is a vital capability for robotic manipulation in unstructured scenes. In this context, full pose estimation of relevant objects in a scene is a critical step towards the introduction of robots into household environments. In this paper, we present an approach for building metric 3D models of objects using local descriptors from several images. Each model is optimized to fit a...

متن کامل

Integration of Probabilistic Pose Estimates from Multiple Views

We propose an approach to multi-view object detection and pose estimation that considers combinations of single-view estimates. It can be used with most existing single-view pose estimation systems, and can produce improved results even if the individual pose estimates are incoherent. The method is introduced in the context of an existing, probabilistic, view-based detection and pose estimation...

متن کامل

Modeling Pose/Appearance Relations for Improved Object Localization and Pose Estimation in 2D images

We propose a multiview model of appearance of objects that explicitly represents their variations of appearance with respect to their 3D pose. This results in a probabilistic, generative model capable of precisely synthesizing novel views of the learned object in arbitrary poses, not limited to the discrete set of trained viewpoints. We show how to use this model on the task of localization and...

متن کامل

Depth-based hand pose estimation: methods, data, and challenges

Hand pose estimation has matured rapidly in recent years. The introduction of commodity depth sensors and a multitude of practical applications have spurred new advances. We provide an extensive analysis of the state-of-the-art, focusing on hand pose estimation from a single depth frame. To do so, we have implemented a considerable number of systems, and will release all software and evaluation...

متن کامل

Object Manipulation in Cluttered Scenes Informed by Physics and Sketching

In this paper, we propose a framework to enable an autonomous robot to manipulate objects in cluttered scenes. Manipulation of objects in a complex cluttered scene demands an extremely precise pose estimation system. In order to precisely estimate object poses, a database of the objects should be acquired from earlier encounters. Hence, in addition to the pose estimation, a system to aid object...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012